Nyquist Plot

Plot of $G(j\omega)$ in the complex plane as ω is varied on $(-\infty, \infty)$

$s = j\omega$

Nyquist path

Relation to Bode plot

- AR is distance of $G(j\omega)$ from the origin
- Phase angle, ϕ, is the angle from the Real positive axis
Nyquist Plot

- First order system

\[K = 1, \tau = 1 \]

\[AR(0) = 1 \]

\[AR(-\infty) = AR(\infty) = 0 \quad \phi(\infty) = -\frac{\pi}{2} \]
Nyquist plot

- Second order process: \(G(s) = \frac{K}{\tau^2 s^2 + 2\xi \tau s + 1} \)

\[K = 1, \tau = 1 \]

Nyquist Diagram

- \(\xi = 0.25 \)
- \(\xi = 1 \)
- \(\xi = 2 \)

\[AR(-\infty) = AR(\infty) = 0 \]
\[\phi(\infty) = -\pi \]
Nyquist plot

- Third order process: \(G(s) = \frac{1}{s^3 + 3s^2 + 3s + 1} \)

\[AR(-\infty) = AR(\infty) = 0 \quad \phi(\infty) = -\frac{3\pi}{2} \]
Nyquist Plot

- Delayed system

\[G(s) = \frac{Ke^{-\theta s}}{\tau s + 1} \]

\[AR(-\infty) = AR(\infty) = 0 \]

\[\lim_{\omega \to \infty} \phi(\omega) = -\infty \]
Nyquist plot

System with pole at zero

- Pole at $s = 0$ is on the Nyquist path - no finite dc gain

 $$AR \to \infty$$

- Strategy is to go around the singularity about $s = \epsilon e^{j\omega}$ in the right half plane (ϵ a small number)
Nyquist plot

- Pole at zero

\[s = \epsilon e^{j\omega} \]

\[s = j\omega \]
System with integral action:

\[G(s) = \frac{1}{s(s+1)} \]
Che 446: Process Dynamics and Control

Frequency Domain
Controller Design
$G(s) = K_c \left(\frac{1}{\tau_I s} + 1 \right)$

$AR = K_c \sqrt{\frac{1}{\omega^2 \tau_I^2}} + 1$, $\phi = -\tan^{-1}\left(\frac{1}{\omega \tau_I} \right)$
PD Controller

\[G(s) = K_c \left(1 + \tau_D s\right) \]

\[AR = K_c \sqrt{1 + \omega^2 \tau_D^2}, \quad \phi = \tan^{-1}(\omega \tau_D) \]
PID Controller

\[G(s) = K_c \left(\frac{1}{\tau_I s} + 1 + \tau_D s \right) \]

\[AR = K_c \sqrt{\left(\omega \tau_D - \frac{1}{\omega \tau_I} \right)^2 + 1}, \quad \phi = \tan^{-1} \left(\omega \tau_D - \frac{1}{\omega \tau_I} \right) \]
Consider open-loop control system

\[Y(s) = G(s)C(s)R(s) = G_{OL}(s)R(s) \]

1. Introduce sinusoidal input in setpoint (\(D(s) = 0 \)) and observe sinusoidal output
2. Fix gain such \(AR = 1 \) and input frequency such that \(\phi = -180 \)
3. At same time, connect close the loop and set \(R(s) = 0 \)

Q: What happens if \(AR > 1 \) ?
Bode Stability Criterion

“A closed-loop system is unstable if the frequency of the response of the open-loop G_{OL} has an amplitude ratio greater than one at the critical frequency. Otherwise it is stable. “

Strategy:

1. Solve for ω in

$$\arg(G_{OL}(j\omega)) = -\pi$$

2. Calculate AR

$$AR = |G_{OL}(i\omega)|$$
Bode Stability Criterion

To check for stability:

1. Compute open-loop transfer function
2. Solve for ω in $\phi=-\pi$
3. Evaluate AR at ω
4. If $AR>1$ then process is unstable

Find ultimate gain:

1. Compute open-loop transfer function without controller gain
2. Solve for ω in $\phi=-\pi$
3. Evaluate AR at ω
4. Let $K_{cu} = \frac{1}{AR}$
Bode Criterion

Consider the transfer function and controller

\[G(s) = \frac{5e^{-0.1s}}{(s + 1)(0.5s + 1)} \]

\[C(s) = 0.4\left(1 + \frac{1}{0.1s}\right) \]

- Open-loop transfer function

\[G_{OL}(s) = \frac{5e^{-0.1s}}{(s + 1)(0.5s + 1)} \left(0.4\left(1 + \frac{1}{0.1s}\right)\right) \]

- Amplitude ratio and phase shift

\[\text{AR} = \frac{5}{\sqrt{1 + \omega^2}} \frac{1}{\sqrt{1 + 0.25\omega^2}} \left(0.4 \sqrt{1 + \frac{1}{0.01\omega^2}}\right) \]

\[\phi = -0.1\omega - \tan^{-1}(\omega) - \tan^{-1}(0.5\omega) - \tan^{-1}\left(\frac{1}{0.1\omega}\right) \]

- At \(\omega=1.4128\), \(\phi=-\pi\), \(\text{AR}=6.746\)
Bode Criterion

\[20 \log_{10}(AR) \approx 15, \quad AR \approx 6 \]

\[\omega \approx 1.4 \]
Closed-loop tuning relation

- With P-only, vary controller gain until system (initially stable) starts to oscillate.
- Frequency of oscillation is ω_c.

- Ultimate gain, K_u, is $1/M$ where M is the amplitude of the open-loop system.
- Ultimate Period

$$P_u = \frac{2\pi}{\omega_c}$$

Ziegler-Nichols Tunings

<table>
<thead>
<tr>
<th>Type</th>
<th>$K_u/2$</th>
<th>$P_u/1.2$</th>
<th>$P_u/2$</th>
<th>$P_u/8$</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI</td>
<td>$K_u/2.2$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PID</td>
<td>$K_u/1.7$</td>
<td>$P_u/2$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bode Stability Criterion

- Using Bode plots, easy criterion to verify for closed-loop stability
 - More general than polynomial criterion such as Routh Array, Direct Substitution, Root locus
 - Applies to delay systems without approximation
 - Does not require explicit computation of closed-loop poles
 - Requires that a unique frequency yield phase shift of -180 degrees
 - Requires monotonically decreasing phase shift
Nyquist Stability Criterion

Observation

- Consider the transfer function \(F(s) = (s + a) \)

- Travel on closed path containing \(s = -a \) in the \(s \) domain in the clockwise direction

- In \(F \) domain, travel on closed path encircling the origin in the clockwise direction

- Every encirclement of \(-a\) in \(s \) domain leads to one encirclement of the origin in \(F \) domain
Nyquist Stability Criterion

Observation

- Consider the transfer function
 \[F(s) = \frac{1}{(s+a)} \]

- Travel on closed path containing \(s = -a \) in the \(s \) domain in the *clockwise direction*

- In \(F \) domain, travel on closed path encircling the origin in the *counter clockwise direction*

- Every encirclement of \(-a\) in \(s \) domain leads to one encirclement or the origin in \(F \) domain
Nyquist Stability Criterion

- For a general transfer function

\[F(s) = K \frac{\Pi_{i=1}^{n-1}(s+b_i)}{\Pi_{k=1}^{n}(s+a_k)} \]

- For every zero inside the closed path in the \(s \) domain, every clockwise encirclement around the path gives one clockwise encirclement of the origin in the \(F \) domain.

- For every pole inside the closed path in the \(s \) domain, every clockwise encirclement around the path gives one counter clockwise encirclement of the origin in the \(F \) domain.

- The number of clockwise encirclements of the origin in \(F \) domain \((N) \) is equal to number of zeros \((Z) \) less the number of poles \((P) \) inside the closed path in the \(s \) domain.

\[N = Z - P \]
Nyquist Stability Criterion

To assess closed-loop stability:

- Need to identify unstable poles of the closed-loop system

\[A(s)L(s) + B(s)P(s) = 0 \]

- That is, the number of poles in the RHP

Consider the transfer function

\[F(s) = 1 + G(s)C(s) = 1 + \frac{B(s)}{A(s)} \frac{P(s)}{L(s)} = \frac{A(s)L(s) + B(s)P(s)}{A(s)L(s)} \]

- Poles of the closed-loop system are the zeros of \(F(s) \)
Nyquist Stability Criterion

Path of interest in the \(s \) domain must encircle the entire RHP

- Travel around a half semi-circle or radius \(r \) that encircles the entire RHP \((r \to \infty)\)
- For a proper transfer function
 \[
 F(s) = 1 + G(s)C(s) = 1 + G_{OL}(s)
 \]
- Every point on the arc of radius are such that
 \[
 \lim_{s \to \infty} F(s) = 1
 \]
collapse to a single point \(F(s) = 1 \) in \(F \) domain
Nyquist Stability Criterion

Path of interest is the Nyquist path

Consider the Nyquist plot of $F(s)$
Nyquist Stability Criterion

- Compute the poles of $F(s)$

 ➤ Assume that it has P unstable poles

 ➤ Count the number of clockwise encirclements of the origin of the Nyquist plot of $F(s)$
 ➤ Assume that it makes N clockwise encirclements

 ➤ The number of unstable zeros of $F(s)$ = (the number of unstable poles of the closed-loop system) $= Z$

 $$Z = N + P$$

 ➤ Therefore the closed-loop system is unstable if

 $$Z > 0$$
Nyquist Stability Criterion

Consider the open-loop transfer function

\[G_{OL}(s) = \frac{B(s)}{A(s)} \frac{P(s)}{L(s)} \]

- \(G_{OL}(s) \) has the same poles as \(F(s) \)

- The origin in \(F \) domain corresponds to the point \((-1,0)\) in the \(G_{OL} \) domain

![Diagram showing Nyquist plot with origin at (-1,0)]
Nyquist Stability

In terms of the open-loop transfer function

- The number of poles of $G_{OL}(s)$ gives P

- The number of clockwise encirclements of (-1,0) of $G_{OL}(j\omega)$ gives the number of clockwise encirclements of the origin of $F(j\omega)$ i.e., N

- The number of unstable poles of the closed-loop system is given by

$$Z = N + P$$
Nyquist Stability Criterion

“If N is the number of times that the Nyquist plot encircles the point $(-1,0)$ in the complex plane in the clockwise direction, and P is the number of open-loop poles of G_{OL} that lie in the right-half plane, then $Z=N+P$ is the number of unstable poles of the closed-loop characteristic equation.”

Strategy

1. Compute the unstables poles of
2. Substitute $s=j\omega$ in $G_{OL}(s)$
3. Plot $G_{OL}(j\omega)$ in the complex plane
4. Count encirclements of $(-1,0)$ in the clockwise direction
Consider the transfer function

\[G(s) = \frac{5e^{-0.1s}}{(s+1)(0.5s+1)} \]

and the PI controller

\[C(s) = 0.4 \left(1 + \frac{1}{0.1s} \right) \]

The open-loop transfer function is

\[G_{OL}(s) = G(s)C(s) = \frac{2(0.1s+1)e^{-0.1s}}{0.1s(s+1)(0.5s+1)} \]

- No unstable poles \(P = 0 \)
- One pole on the Nyquist path (must go around small circle around the origin in the right half plane)
Nyquist Stability

- Nyquist plot

- There are 2 clockwise encirclements of (-1,0) \(N = 2 \)
Nyquist Stability

- Counting encirclements must account for removal of origin

\[G(\epsilon) > 0 \]

\[N = 2 \]

\[Z > 0 \quad \text{the closed-loop system is unstable} \]
Nyquist Criterion

Consider the transfer function

\[G'(s) = \frac{(s+3)}{(s+5)(s+7)} \]

and the PI controller

\[C'(s) = 9\frac{(s+1)}{s} \]

The open-loop transfer function is

\[G_{OL}(s) = G(s)C'(s) = \frac{9(s+3)(s+1)}{s(s+5)(s+7)} \]

- No unstable poles \(P = 0 \)
- One pole on the Nyquist path (must go around small circle around the origin in the right half plane)
Nyquist Stability

- Nyquist plot

- There are 2 clockwise encirclements of (-1,0) \(N = 0 \)
Nyquist Criterion

Consider the transfer function

\[G(s) = \frac{4e^{-4s}}{s+7} \]

and the PI controller

\[C(s) = \frac{7(s+1)}{2s} \]

The open-loop transfer function is

\[G_{OL}(s) = G(s)C(s) = \frac{28e^{-4s}(s+1)}{2s(s+7)} \]

- No unstable poles \(P = 0 \)
- One pole on the Nyquist path (must go around small circle around the origin in the right half plane)
Nyquist Stability

- Nyquist plot

- There are 2 clockwise encirclements of (-1,0) \(N > 0 \)
Bode Stability

- Stability margins for linear systems

\[G_{OL}(j\omega) \]

\((-1, 0)\)
Stability Considerations

- Control is about stability

- Considered exponential stability of controlled processes using:
 - Routh criterion
 - Direct Substitution
 - Root Locus
 - Bode Criterion (Restriction on phase angle)
 - Nyquist Criterion

- Nyquist is most general but sometimes difficult to interpret

- Roots, Bode and Nyquist all in MATLAB

\[\text{Polynomial (no dead-time)} \]
Stability Margins

- Stability margins for linear systems

\[G_{OL}(j\omega) \]

\((-1, 0)\)

\[M_g \]

\[M_f \]
Stability Margins

- **Gain margin**: M_g

 Let AR_u be the amplitude ratio of G_{ol} at the critical frequency ω_u

 \[M_g = \frac{1}{AR_u} \]

- **Phase margin**:

 Let ϕ be the phase shift of G_{ol} at the frequency where $AR = 1$

 \[M_f = 180 + \phi \]
Stability Margin