CHEE 811 |
Mathematical Modeling of Chemical Processes |
The steps that are required to build comprehensive mathematical models are examined. These steps include: definition of the intended model use; formulation of model equations; determination of model parameters from correlations and experimental data; parameter sensitivity and estimability analysis; solution of model equations using numerical techniques; model validation; and potential model applications. While the focus is on the development of fundamental and semi-empirical models, empirical modeling techniques are also discussed. Students complete a mathematical modeling project related to their research interests, and are expected to have taken undergraduate courses in differential equations, statistics and reaction engineering. This course is aimed at students working in a variety of research areas where mathematical models are important. Process examples are selected from: reactive distillation, heat transfer, polymerization,bioreactors, reformers, and fuel cells.
|
CHEE 838 |
Pollution and Risk Assessment |
Chemicals of potential concern and their effects on human health and the environment are investigated. Principles of quantitative risk assessments are presented – including hazard identification, dose-response assessment, exposure, and risk characterization – in the context of regulations and applications in environmental engineering practice, addressing issues facing all stakeholders. Location: DUP 311
|
CHEE 872 |
Polymeric Biomaterials |
This course is designed to appeal to students in all fields of this interdisciplinary field, from biomechanics to polymer chemistry. It will provide a thorough background in the underlying fundamental biological and polymer science principles involved in the use of polymers as medical materials. Topics include surface and bulk polymer properties, applications of polymeric biomaterials, the biological principles that dictate host response to a material, and biopolymer degradation. Prerequisite: Permission of the instructor. |
CHEE 874 |
|
This course is designed as a graduate level introductory course in tissue engineering: the interdisciplinary field that encompasses biology, chemistry, medical sciences and engineering to design and fabricate living systems to replace damaged or diseased tissues and organs. Topics to be discussed include: tissue anatomy, basic cell biology, cell scaffolds, cell sources and differentiation, design considerations, diffusion and mass transfer limitations, effects of external stimuli, bioreactors, methods used to evaluate the engineered product(s), and implantation. Case studies of specific tissue engineering applications will also be discussed. Students will be required to participate in, as well as lead, discussions on the course material and relevant journal articles. No previous background in biology is required. |
CHEE 897 |
Seminar |
Graduate students working on theses must give a seminar on their research. Graduate students enrolled in this course must attend the seminars. Grading is a Pass/Fail. |
CHEE 898 |
Master's Project |
For M.Eng. students only, this is a course which involves a laboratory research project. Students are expected to find a professor to supervise them in a laboratory-based project within their research group. The student receives two course credits (6 units) for successful completion. Grading is a Pass/Fail. |
CHEE 899 |
Master's Thesis Research |
CHEE 903 |
This course will examine the fundamental chemistry and processes of polymerizations conducted in aqueous and non-aqueous dispersions. Students will understand the motivation and incentive for producing polymer in dispersed media, the types of product one can make and the relationship between process operation and polymer structure. Emphasis is placed on reactor design, process chemistry, and issues related to industrial production such as characterization and scale-up. (1.5 units) Location: DUP 311
|
CHEE 911 |
Microscale Transport Phenomena |
This 6 week (3 hours/week) module will provide in-depth coverage of microscale transport phenomena motivated by the emerging fields of Microfluidics and Lab-on-a-Chip. During this course, students will intensify and expand their knowledge of the fundamentals of heat, mass, charge and momentum transfer with emphasis on microscale geometries. The difference of macro- and microscale transport phenomena and the limitation of classical mechanics will be highlighted by scaling analysis. Additionally, an introduction into the fundamentals of selected electrohydrodynamic phenomena will be given. |
CHEE 912 |
Micro and Nanotechnologies for On-chip Applications |
This 6 week (3 hours/week) module will provide an overview on the latest developments, fabrication techniques, and principles of operation of contemporary micro- and nanotechnologies used in lab-on-chip (LOC) type platforms. Small-scale subunit operations required in LOC systems, equally relevant across several disciplines in both life sciences and engineering fields, will be covered in detail. The knowledge acquired in these topics will be used during the last part of the course to analyze the design of LOC-based systems in key applications in different areas including biosensing, biotechnology and emerging energy technologies. PREREQUISITE: none; (1.50 units) |
CHEE 999 |
Ph.D. Thesis Research |
APSC 888 |
Engineering Innovation and Entrepreneurship |
This course will help learners from across engineering develop an entrepreneurial mindset capable of turning problems into opportunities. Learners will investigate the relationships between innovation and industrial dynamics, and seek to understand the fundamental forces that drive the science and technology industries’ evolution and industry life cycles. (Booked w/CHEE410) |