Small Molecules – Big Challenges: Can We Develop an Economically Viable Process for Converting CO2 to Renewable Synthetic Fuels?

Dr. David Samikov/University of Waterloo

Thursday, April 02, 2020, 2:30pm
Dupuis Hall, Room 215

Thermocatalytic conversion of CO2-rich streams (e.g., landfill gas, biogas, industrial flue gases) into synthetic fuels is an attractive route for CO2 utilization. This approach of Carbon Capture & Utilization (CCU) is an alternative to Carbon Capture & Storage (CCS) by storing CO2 in geological formations and other similar routes. To make the process of thermocatalytic conversion sustainable, H2 (required for CO2 hydrogenation to fuels) should have negligible carbon footprint, which is achievable if H2 is produced via water electrolysis using renewable (or nuclear) power. However, a number of technological issues remain to be resolved with respect to the design of the CO2 hydrogenation process. These issues are mainly related to catalyst performance, reactor design, and system integration.

This talk presents recent advances achieved in our group with respect to the thermocatalytic conversion of CO2 into renewable natural gas (RNG) and renewable synthetic gas (RSG). Novel catalytic formulations developed in our group, based on emerging catalytic materials and advanced synthesis techniques, show promising catalytic performance. Possible mechanisms of superior catalytic activity and selectivity are discussed. Novel reactor configurations are being developed, focusing on thermal management and performance optimization. Results of numerical simulations and experimental proof-of-concept experiments are presented. Techno-Economic Assessment for a particular case of converting landfill gas to RNG is discussed. Altogether, our recent developments provide a new avenue for CO2 utilization into useful fuels.